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In recent years, dynamic time warping (DTW) has begun to become the most widely used technique for
comparison of time series data where extensive a priori knowledge is not available. However, it is often
expected a multivariate comparison method to consider the correlation between the variables as this cor-
relation carries the real information in many cases. Thus, principal component analysis (PCA) based sim-
ilarity measures, such as PCA similarity factor (SPCA), are used in many industrial applications.

In this paper, we present a novel algorithm called correlation based dynamic time warping (CBDTW)
which combines DTW and PCA based similarity measures. To preserve correlation, multivariate time ser-
ies are segmented and the local dissimilarity function of DTW originated from SPCA. The segments are
obtained by bottom-up segmentation using special, PCA related costs. Our novel technique qualified
on two databases, the database of signature verification competition 2004 and the commonly used
AUSLAN dataset. We show that CBDTW outperforms the standard SPCA and the most commonly
used, Euclidean distance based multivariate DTW in case of datasets with complex correlation structure.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A time series is a sequence of values measured as a function of
time. These kinds of data are widely used in the fields of process
engineering (Singhal & Seborg, 2005), medicine (Tormene,
Giorgino, Quaglini, & Stefanelli, 2009), bioinformatics (Aach &
Church, 2001), chemistry (Abonyi, Feil, Németh, & Árva, 2005a),
finance (Rada, 2008) and even for tornado prediction (Mcgovern,
Rosendahl, Brown, & Droegemeier, 2011). The increasing popular-
ity of knowledge discovery and data mining tasks for discrete data
has indicated the growing need for similarly efficient methods for
time series databases. These tasks share a common requirement: a
(dis) similarity measure has to be defined between the elements of
a given database. Moreover, the results of a data mining applica-
tion from simple clustering and classification to complex deci-
sion-making systems are highly dependent on the applied
dissimilarity measure.

Dissimilarity of multivariate time series can be approached
from two different perspectives. The first option is to compare
the variables directly and determine their weight based on a train-
ing database. Although this approach obviously has its advantages
and can provide acceptable results, it is often not as effective as one
would expect.

The reason of this unexpected inaccuracy is that the multivar-
iate time series are usually much more than the collection of uni-
variate time series as they are not only described by the variables
ll rights reserved.
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but their relation. This relation is the correlation between the
variables and it can be treated as a hidden process which carries
the real description of a complex system. A classic example for
this hidden process based approach is process monitoring in
chemical plants: a high-density polyethylene plant requires to
track more than 10 variables. Under monitoring, the tracked sig-
nals (polymer production intensity, hydrogen input, ethylene in-
put, etc.) are measured against their stored patterns to detect
any sign of malfunctions. However, the signals should not be com-
pared to their counterparts only because the deviation in one or
more signals does not mean malfunction automatically. For this
reason, multivariate monitoring and control schemes based on la-
tent variable methods have been receiving increasing attention by
industrial practitioners. {. . .} Several companies have enthusiasti-
cally adopted the methods and have reported many success sto-
ries. Applications have been reported where multivariate
statistical process control, fault detection and diagnosis is
achieved by utilizing the latent variable space, for continuous
and batch processes, as well as, for process transitions as for
example start ups and re-starts (Kourti, 2005). Motivated by the
results above, modifications of general SPCA (Krzanowski, 1979)
were developed for various purposes (Gunther, Conner, & Seborg,
2008; Johannesmeyer, Singhal, & Seborg, 2002; Yang & Shahabi,
2007).

Although PCA considers the time series as a whole, it does not
take into account the alternations in the relationship between
the variables. The main goal of this paper is to construct a dissim-
ilarity measure which deals with the changes in the correlation
structure of the variables as flexible as DTW allows.
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The increasing and less and less costly computational power
made possible to create similarity measures without considering
their indexing capabilities for tasks where the quality of the com-
parison is much more important than the speed of the calculation.
Non-linear matching techniques such as DTW, longest common
subsequences and symbolic approximation have been studied
extensively for this purpose. DTW, which has long been known in
the speech recognition community (Sakoe & Chiba, 1971), excelled
these methods in popularity thanks to its adaptability (Giorgino,
2009) and efficiency. It was successfully applied variety of problems
in various disciplines from signature verification (Kholmatov &
Yanikoglu, 2005) to weather prediction (Mcgovern et al., 2011).

Concluding the above cited results, it is desirable to combine the
strength of DTW and PCA similarity factor. We propose a new and
intuitive method which is based on DTW aided PCA and segmenta-
tion, named correlation based dynamic time warping (CBDTW). The
coherent parts of a multivariate time series define segments; there-
fore, segmentation is applied to address that the PCA similarity fac-
tor does not take into account the alternation of variables. These
segments can be compared directly; however, DTW is used as it
makes the presented dissimilarity measure invariant to phase shifts
of the time axis and to the differences in the number of segments.
Moreover, DTW is also capable of compensating the ‘‘locally elastic’’
shifts (local time warping) of time series.

The presented algorithm was qualified on two databases which
differ from the correlation point of view: the database of signature
verification competition 2004 and the AUSLAN dataset which is
widely used by the time series data mining community (Frank &
Asuncion, 2010). We show that CBDTW obviously outperforms
the standard SPCA independently of the complexity of the correla-
tion and it also surpasses the most commonly used Euclidean dis-
tance based multivariate DTW for the AUSLAN dataset which has a
complex correlation structure of 22 variables.

The rest of the paper is organized as follows. Section 2 details the
nomenclature of the proposed dissimilarity measure and segmenta-
tion. In Section 3, we introduce the novel similarity measure in full
detail, while Section 4 conducts a detailed empirical comparison of
the presented method with other techniques. Finally, in Section 5
we make our conclusions and suggestions for future work.
1 For a comprehensive discussion of DTW, see Rabiner & Juang (1993).
2. Theoretical background

Xn is an n-variable, m-element time series where xi is the ith
variable and xi(j) denotes its jth element:

Xn ¼ ½x1; x2; x3; . . . ; xn�;
xi ¼ ½xið1Þ; xið2Þ; . . . ; xiðjÞ; . . . ; xiðmÞ�T

ð1Þ

According to this notation a multivariate time series can be repre-
sented by a matrix in which each column corresponds to a variable
and each row represents a sample of the multivariate time series at
a given time:

x1 x2 � � � xn½ �
Xnð1Þ
Xnð2Þ

..

.

XnðmÞ

2
66664

3
77775

x1ð1Þ x2ð1Þ � � � xnð1Þ
x1ð2Þ x2ð2Þ � � � xnð2Þ

..

. ..
. ..

. ..
.

x1ðmÞ x2ðmÞ . . . xnðmÞ

2
66664

3
77775

ð2Þ

Throughout this paper, the dissimilarity between Xn and Yn is de-
noted by d(Xn,Yn), where 0 6 d(Xn,Yn), d(Xn,Yn) = d(Yn,Xn) and
d(Xn,Xn) = 0.

As it was mentioned before, the time series should be seg-
mented to consider the alternation of the latent variable. More-
over, the segmentation has another advantage, i.e. it speeds up
DTW which is computationally expensive (O(m2), where m is the
length of the time series).

The ith segment of Xn is a set of consecutive time points,
Si(a,b) = [Xn(a);Xn(a + 1); . . . ;Xn(b)]. The c-segmentation of time
series Xn is a partition of Xn to c non-overlapping segments,
Sc

Xn
¼ ½S1ð1; aÞ; S2ðaþ 1; bÞ; . . .;Sc(k,m)]. In other words, a c-segmen-

tation splits Xn to c disjoint time intervals, where 1 6 a and k 6m.
The segmentation problem can be framed in several ways (Keogh,
Chu, Hart, & Pazzani, 2001), but its main goal is always the same:
finding homogenous segments by the definition of a cost function,
cost(Si(a,b)). This function can be any arbitrary function which pro-
jects the space of multivariate time series to the space of the non-
negative real numbers. Usually, cost(Si(a,b)) is based on the differ-
ences between the values of the ith segment and its approximation
by a simple function f (constant or linear function, a polynomial of
a higher but limited degree):

costðSiða; bÞÞ ¼
1

b� aþ 1

Xb

l¼a

dðXnðlÞ; f ðXnðlÞÞÞ ð3Þ

Thus, the segmentation algorithms simultaneously determine the
parameters of the models and the borders of the segments by min-
imizing the sum of the costs of the individual segments:

cost Sc
Xn

� �
¼
Xc

i¼1

costðSiða; bÞÞ ð4Þ

The segmentation cost of a time series can be minimized by dy-
namic programming, which is computationally intractable for many
real datasets (Himberg, Korpiaho, Mannila, Tikanmaki, & Toivonen,
2001). Consequently, heuristic optimization techniques such as
greedy top-down or bottom-up techniques are frequently used to
find good but suboptimal c-segmentations:

� Bottom-up: Every element of Xn is handled as a segment.
The costs of the adjacent segments are calculated and
two segments with the minimum cost are merged. The
merging cost calculation of adjacent segments and the
merging are continued until some goal is reached.

� Top-down: The whole Xn is handled as a segment. The costs of
every possible split are calculated and the one with the mini-
mum cost is executed. The splitting cost calculation and split-
ting is continued recursively until some goal is reached.

� Sliding window: The first segment is started with the first
element of Xn. This segment is grown until its cost exceeds
a predefined value. The next segment is started at the next
element. The process is repeated until the whole time ser-
ies is segmented.

All of these segmentation methods have their own specific
advantages and drawbacks. Accordingly, the sliding window meth-
od is the fastest one, however, it is not able to divide up a sequence
into predefined number of segments. The applied method depends
on the given task. Keogh et al. (2001) examined these heuristic opti-
mization techniques in detail through the application of piecewise
linear approximation. It can be said if real-time (on-line) segmenta-
tion is not required, the best result can be reached by bottom-up
segmentation.

3. Correlation based dynamic time warping of multivariate
time series

DTW allows us to select the local dissimilarity function (dissim-
ilarity between the data points.1) Most frequently Euclidean
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distance is used for this purpose (Giorgino, 2009). It pairs the points
of the n-dimensional space and compares them to each other, as it is
shown in Fig. 1. This approach is useful when all of the variables
have to be used, they are all measured in the same scale and there
are no significant differences in their amplitudes and values. Even
if such differences exist, z-normalization can be used.

Although correlation is slightly considered, there is a serious
problem: DTW creates ‘‘singularities’’ because it tries to minimize
the variance of the local dissimilarities between the points by
warping the time axis. This property can prevent DTW to align
trends if they are located slightly ‘‘higher’’ or ‘‘lower’’ than their
corresponding pair. Derivative DTW (DDTW) was introduced
(Keogh & Pazzani, 2001) to correct this behavior; however, DDTW
has not been extended for multivariate time series.

The handicap of SPCA based methods is more obvious. They are
not able to handle the alternations of the correlation structure
which affect the hyperplanes, therefore in most real-life applica-
tions segmentation is required to create homogeneous segments
from the viewpoint of the correlation structure. However, the seg-
mentation raises another problem. Although in many real-life
applications a lot of variables must be simultaneously tracked
and monitored, most of the segmentation algorithms are used for
the analysis of only one time-variant variable (Kivikunnas, 1998).
Usage of only one variable for segmentation of multivariate time
series is not precise enough when the correlation between the vari-
ables is an important factor. Moreover, the higher dimensional seg-
mentation problems, such as surface simplification (Heckbert &
Garland, 1997), have much better understanding than its multivar-
iate relative.

3.1. Proposed algorithm and evolution method

To overcame the above mentioned problem of SPCA, the PCA
based segmentation can be applied which we presented previously
(Abonyi, Feil, Németh, & Árva, 2005b). Hotelling’s T2 statistics and
the Q reconstruction error were used as the measure of the
homogeneity of the segments, i.e. to construct the cost function.
Fig. 2 shows these two measures in case of a 2-variable 11-element
time series. The elements are represented by black ellipses and the
gray spot marks the intersection of the axes of the principal
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Fig. 1. Trajectories of two signatures compar
components, i.e. the center of the space which was defined by
these principal components. If the second principal component is
ignored then two distances can be computed for each element.
The first one is the squared Euclidean distance between the origi-
nal data point and its reconstructed value using the most signifi-
cant principal component only. The arrow noted by Q represents
this lost information which can be computed for the jth data point
of the times series Xn as follows:

QðjÞ ¼ ðXnðjÞ � bXnðjÞÞðXnðjÞ � bXnðjÞÞT ¼ XnðjÞ I � UXn ;pUT
Xn ;p

� �
XnðjÞT ;

ð5Þ

where bX nðjÞ is the jth predicted value of Xn, I is the identity matrix
and UXn ;p is the matrix of eigenvectors. These eigenvectors belong to
the most important p 6 n eigenvalues of covariance matrix of Xn,
thus they describe the hyperplanes. Please note, the Q error based
segmentation can be considered as the natural extension of Piece-
wise Linear Approximation which was presented by Keogh and Paz-
zani (1999). Both of them define the cost function based on the
Euclidean distance between the original data and its reconstructed
value from a lower dimensional hyperplane.

The second measure which can be used to construct the cost
function is Hotelling’s T2 statistic. This shows the distance of each
element from the center of the data, hence it signs the distribution
of projected data. Its formula is the following for the jth point:

T2ðjÞ ¼ YpðjÞYpðjÞT ; ð6Þ

where Yp(j) is the lower (p) dimensional representation of Xn(j). The
cost functions can be defined as:

costQ ðSiða; bÞÞ ¼
1

b� aþ 1

Xb

j¼a

QðjÞ

costT2 ðSiða; bÞÞ ¼
1

b� aþ 1

Xb

j¼a

T2ðjÞ
ð7Þ

Using one of the above mentioned PCA based segmentation, the cor-
relation based dynamic time warping of multivariate time series
can be realized. The proposed method can be summarized as
follows:
80

5

10

ed with Euclidean distance based DTW.



Fig. 2. Measures to use for PCA model based segmentation.
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� Segment the time series of the given database based on cor-
relation to create the most homogenous segments. The pro-
jection error or Hotelling’s statistics can be used as basis of
the cost function. This segmentation can be done off-line in
most cases.

� Segment the query time series according to the database.
� Calculate the DTW dissimilarity between the query and

the time series of the database. The local dissimilarity
measure of DTW can be chosen arbitrarily. In this paper,
it is derived from a covariance based similarity measure,
i.e., 1 � SPCA.

Validation of a similarity measure which is not optimized for
a specific database cannot be carried out theoretically, experi-
mental evaluation must be made on wide range of different
datasets. Unfortunately, there is no similar classification/cluster-
ing page for multivariate time series as for univariate series
(Keogh et al., 2011). So, to perform the validation of CBDTW, a
modified leave-one-out k nearest neighbor search algorithm
was used. For the pseudocode see Algorithm 1. In the first for
loop the precision array is initialized which contains the values
of precision at the given values of recall. The precision is calcu-
lated for every item of the database in the main for loop. The va-
lue of k (number of nearest neighbors) and r (number of
required items from the same class) is set for the actual time
series and the kNN search is performed in the while loop. If
the number of retrieved items from the same class (c) is equal
to r then the precision array is updated and the value of k and
r are incremented. If the number of items from the same class
is less than the required value (r), the algorithm looks for more
neighbors (increments the value of k). This continues until the
value of r is less than or equal to r_items. For simplicity and
according to Yang and Shahabi (2004), the value of r_items
was chosen to 10.

Using the precision array, a recall-precision graph can be plotted
which is a common tool to measure and demonstrate the perfor-
mance of the information retrieval (IR) systems (Frakes & Baeza-
Yates, 1992). The precision expresses the proportion of the relevant
sequences from the set of the retrieved items. Similarly, the recall
is the number of the relevant elements in a database retrieved by
the k nearest neighbor search. Note that the graph can be consid-
ered as the extension of the 1-NN search used in by Keogh et al.
(2011).
Before Algorithm 1 was executed, two important parameters
had to be selected for both datasets. The first one is the number
of principal components (p) as the increasing number of principal
components decreases the reconstruction error. If p equals to the
number of the variables, the Q reconstruction error becomes zero
and the values of T2 statistics become the real distances in the
whole dataset. On the other hand, if p is too small, the reconstruc-
tion error will be too large to characterize the covariance precisely.
In these two extreme cases the segmentation is not based on the
internal relationships of the variables, so simple equidistant seg-
ments can be detected. To avoid this, the value of p has to be se-
lected carefully, i.e. the first few p eigenvalues should contain
more than 90% of the total variance.

The other important parameter is the number of segments. It
can be determined by different techniques such as using permu-
tation test to determine whether the increase of the model
accuracy with the increase of the number of segments is due
to the underlying structure of the data or due to the noise
(Vasko & Toivonen, 2002). For simplicity we applied a similar
but much simpler method to determine the number of seg-
ments. Our method based on the weighted modeling error
where the weight is the number of the segments. To get a
clearer picture, the relative reduction rate of the modeling error
is also used:
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Fig. 3. Signature from the database of SVC2004. The vertical lines mark the major changes in covariance between the time series of the two coordinates x and y.

12818 Z. Bankó, J. Abonyi / Expert Systems with Applications 39 (2012) 12814–12823
RR Sc
Xn

� �
¼

cost Sc�1
Xn

� �
� cost Sc

Xn

� �
cost Sc�1

Xn

� � ; ð8Þ

where RR Sc
Xn

� �
is the relative reduction of error when c segments are

used instead of c � 1 segments.

4. Experimental results

In the following, the detailed empirical comparison of the pre-
sented method (CBDTW) with Euclidean-distance (EUC), Euclid-
ean-distance based multivariate DTW, PCA similarity factor
(SPCA) and its segmented version (SEGPCA) is presented. To dem-
onstrate the scalability of the new method, we examined different
number of segments and hyperplanes. Before the results are dis-
cussed, we present the applied parameters to help reproduction.

Euclidean distance is not able to handle time series with differ-
ent length and DTW tends to show its best when the sequences
have the same length (Ratanamahatana & Keogh, 2005). Hence,
we have interpolated the time series to their average length in each
database for these two methods. The PCA based methods do not re-
quire such an action; however, the average length of the AUSLAN
dataset is only 57. Thus, to prepare all of its times series for seg-
mentation, linear interpolation2 was used to obtain sequences with
a length of 300. Another important parameter is how to frame the
segmentation. As previously mentioned, the best segmentation can
be reached by the bottom-up algorithm (Keogh et al., 2001), thus
we used this. The dissimilarity between the corresponding segments
was arisen from the PCA similarity factor, that is 1 � SPCA.

The applied constraints on the warping path of DTW, both glo-
bal and local, also had to be defined. Ratanamahatana and Keogh
(2004, 2005) stated that ‘‘all the evidence suggests that narrow (glo-
bal) constraints are necessary for accurate DTW’’ which is obviously
true for properly preprocessed datasets used in most data mining
applications. However, sometimes there is no chance to do proper
preprocessing and compensate the initial/ending shifts of the time
series in real-time application due to the time or hardware limit.
Moreover, the difference between using an optimized warping
path (e.g., applying R–K band (Ratanamahatana & Keogh, 2004))
or no warping path is often not significant even for preprocessed
2 Using interp1 function of Matlab.
datasets (Keogh et al., 2011). Thus, as a bullet proof solution, we
did not use any global constraints. We also assumed that no
extensive knowledge exists on the databases, thus the most simple
and yet widely used local constraint was selected, i.e. type I3 of
Rabiner and Juang (1993).

Selecting databases for validation purposes is almost as hard as
the creation of a new and useful similarity measure. There is no ar-
gue that the best data should come from the industrial world (pro-
duction data, plant supervision data, real-time sensor information
provided for ECUs, etc.); however, these kinds of data are rarely al-
lowed to be published. Thus, according to Keogh and Kasetty
(2003), two datasets were selected for validation purposes which
are available on the Internet. An important aspect behind the selec-
tion of them was the difference between their correlation structure
which can affect the efficiency of any PCA based similarity mea-
sure. If the underlying (‘‘hidden’’) process can be seen easily and
the correlation of the variables does not vary inner class then the
PCA based similarity measures are not as effective as the conven-
tional measures like Euclidean distance or its warped version.

4.1. SVC2004

The aforementioned first database was created for signature
verification conference 2004 (Yeung et al., 2004). It has 40 sets of
signature data and each set contains 20 genuine signatures from
one signature contributor and 20 skilled forgeries from five other
contributors. Although both genuine signatures and skilled forger-
ies are available, obviously the 800 genuine signatures were used
for validation only. In each signature file, the signature is repre-
sented as a sequence of points. The first line stores the total num-
ber of points, averages 184. The signatures were collected on a
WACOM Intuos tablet, hence seven parameters of the pen was
measured under the enrollment process:

� X-coordinate – scaled cursor position along the x-axis.
� Y-coordinate – scaled cursor position along the y-axis.
� Time stamp – system time at which the event was posted

(not used in this paper).
� Button status – current button status (0 for pen-up and 1
3 Symmetric, non-normalizable local constraint.
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for pen-down, not used in this paper).
� Azimuth – clockwise rotation of cursor about the z-axis.
� Altitude – angle upward toward the positive z-axis.
� Pressure – adjusted state of the normal pressure.

Please note, the time stamps and the button status were not
used in this paper. The reason behind this decision is very simple:
time stamps and button status do not advance the accuracy consid-
erably, except when special handwriting recognition techniques
are used such as stroke detection, equidistant resampling, etc. Fur-
thermore, the usage of time stamps requires an extra interpolation
step which makes harder to reproduce the results.

SVC2004 is an ideal dataset for any segmentation based method
because the correlation alternates many times between the vari-
ables as it was illustrated in Fig. 3. However, the hidden process
is not as hidden as one can expect. Only one of the coordinates
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CBDTW Q 99.04
CBDTW T2 99.04
SEGPCA Q 99.04
SEGPCA T2 99.04
CBDTW T2 99.99
CBDTW Q 99.99
SEGPCA T2 99.99
SEGPCA Q 99.99

Fig. 5. The recall-precision graph of SVC2004 dataset using SEGPCA (dashed lines) and
Circle and square marks used to show whether T2 or Q based segmentation is used.
can be used to represent the whole signature due to the fact that
the variables usually change in the same way at the same place
for a given participant.

For validation, the number of segments and the number of prin-
cipal components had to be chosen in advance for the PCA based
methods. The number of hyperplanes was determined by using
the desired accuracy (loss of variance) of the PCA models. The first
one, two, three and four eigenvalues describe 79.84%, 99.04%,
99.91% and 99.99% of the total variance respectively. To demon-
strate the dependency of PCA based methods on the tightness of
the representation both 2 and 4 dimensional hyperplanes were
used for such techniques.

The number of the segments was achieved by plotting the
weighted costs (costT2=c and costQ/c, where c is the number of seg-
ments) and their relative reduction rates as the function of the
number of segments. Fig. 4 shows these plots. Considering how dif-
6 7 8 9 10

CBDTW (solid lines) with two (filled marks) and four (empty marks) hyperplanes.
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Fig. 6. The recall-precision graph of SVC2004 dataset using all dissimilarity measures.
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ferent each signature is—i.e. how they differ from correlation
structure point of view—, it is not surprising that there is no opti-
mal segmentation from the viewpoint of relative error reduction,
i.e. there is no brake point in the relative reduction rates. However,
there is a practical limit on the number of segments (b184/(p + 1)c),
thus it was chosen to 20 which is suitable both 2 and 4 principal
components.

The results of Algorithm 1 using CBDTW and SEGPCA on
SVC2004 database are shown in Fig. 5. It clearly seems that the
third and fourth hyperplanes do not add any useful information
to the first and second, but makes the classification less effective
because the PCA similarity factor weights the eigenvectors equally.
It is also has to be noted that independently of the type of the
segmentation cost and the number of retained principal compo-
nents, CBDTW provide more precise results than SEGPCA.

Finally, Algorithm 1 was executed for all other methods. In the
light of the fact that the hidden process is not ‘‘hidden enough’’, it
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Fig. 7. The weighted costs and their relative reduction rates with numb
is not surprising that Euclidean distance and its warped version
outperformed all other methods as it can be seen in Fig. 6. From
CBDTW point of view, the relations of the PCA based techniques
are much more interesting: the graph of SEGPCA shows that this
technique really excelled the segmentation free, standard SPCA
and the application of CBDTW improved its results even further.

4.2. AUSLAN

The high quality version of Australian language sign dataset
(AUSLAN) collected by (Kadous, 2002) has been also selected for
validation purposes. It was provided by (Keogh et al., 2011) and
both the normal and high quality version can be downloaded from
the UCI machine learning repository (Frank & Asuncion, 2010) as of
2012.

The high quality dataset contains 95 signs and each of them has
27 examples, totals 2565. Two 5DT gloves as well as two Flock-
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er of segments in case of AUSLAN dataset using two hyperplanes.
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Fig. 8. The recall-precision graph of AUSLAN dataset using SEGPCA (dashed lines) and CBDTW (solid lines) with one (filled marks) and two (empty marks) hyperplane(s).
Circle and square marks used to show whether T2 or Q based segmentation is used.
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Fig. 9. The recall-precision graph of AUSLAN dataset using all dissimilarity measures.

4 Using interp1 function of Matlab.
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of-Birds magnetic position trackers with refresh rate of 100 Hz
were used to acquire the signs of a native signer. The signals of
11 channels were recorded from each hand. The position trackers
measured the x, y, z coordinates, the roll, pitch and yaw for each
hand. The gloves also provided the finger bend data from the five
fingers. Position and orientation were defined to 14-bit accuracy,
giving position information with a typical positional error less than
one centimeter and angle error less than one half of a degree. Fin-
ger bend was measured with 8 bits per finger.

AUSLAN is a much more complex dataset than SVC2004. It has
22 variables, and lots of them are 0 most of the time. This yields to
the underlying process is much more hidden than it was for
SVC2004. In addition, the average length of the time series is only
57, so some preprocessing steps were necessary. It is obvious that
correlation based dynamic time warping requires 10–20 segments
at least for effective warping and this cannot be guaranteed with
this average length because a segment has 0 costQ until the number
of its elements are not equal or exceed to the number of the
principal components. Hence, the sequences were interpolated4

to a sufficiently large, fixed length which was chosen to 300. Please
note, this interpolation is also used for SEGPCA, but not executed for
the standard PCA similarity factor.

The first one, two, three and four eigenvectors describe 92.04%,
97.53%, 98.95% and 99.51% of the total variance, thus the first one
eigenvector was also selected – besides the first two and four
eigenvectors – to provide basis for PCA based methods. The
weighted error and its relative reduction rate using two hyper-
planes can be seen in Fig. 7. According to this, 20 segments have
seemed as appropriate as it was for SVC2004.

The precision-recall graphs of SEGPCA and CBDTW are plotted
using one and two hyperplanes in Fig. 8. The graphs of four hyper-
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Fig. 10. The recall-precision graph of AUSLAN dataset for CBDTW using different number of segments.
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planes based methods are located close to the last four graphs, so
they were omitted to maintain readability. Although it can be seen
that Fig. 8 represents similar results as Fig. 5 (the graphs can be di-
vided into two groups); however, what makes the difference in this
case between the two groups is not the number of hyperplanes but
the type of the segmentation cost.

The results of the validation are shown in Fig. 9. The high values
of PCA similarity factor based methods show that the correlation
obviously describes the classes. Considering the fact how many
variables had to be tracked to observe the underlying processes
(i.e. 22 variables had to be monitored to record the signs which
can be expressed almost as good by using only 1 ‘‘hidden’’ variable)
it is not surprising at all that Euclidean distance and its time warped
extension are not performed as well as they did for SVC2004.

For AUSLAN, CBDTW proved its superiority over all other meth-
ods; however, it also interesting to know how CBDTW scales with
the number of the segments. Thus, we executed CBDTW again
using different number of segments. The results can be seen in
Fig. 10.
5. Conclusion and future work

In this paper, we presented a novel similarity measure for
highly correlated multivariate time series. Our method based on
covariance driven segmentation and dynamic time warping. We
utilized two homogeneity measures as cost function for segmenta-
tion. These homogeneity measures correspond to the two typical
applications of PCA models. The Q reconstruction error can be used
to segment the time series according to the direct change of the
correlation among the variables, while the Hotelling’s T2 statistics
can be utilized to segment the time series based on the drift of
the center of the operating region. The dissimilarity between the
segments were derived from the simple PCA similarity factor. Fi-
nally, we applied DTW to compensate the time shifts and make
the presented dissimilarity measure more accurate.

To prove that CBDTW can outperform PCA similarity factor in
any environment, CBDTW was tested on two datasets which differ
from correlation point of view. AUSLAN has 22 variables with a
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complex correlation structure. It was selected to simulate the ‘‘typ-
ical’’ industrial data, i.e. large number of variables, whose correla-
tion structure cannot be revealed without the application of PCA.
The algorithm was also tested on the dataset of SVC2004 in which,
contrary to AUSLAN, the correlation between the variables is
obvious.

The recall-precision graphs showed superiority of CBDTW over
PCA similarity factor – irrespective of the complexity of the hidden
process – and it even outperforms the Euclidean distance based dy-
namic time warping when a high number of variables with com-
plex correlation structure has to be handled. The results also
show that the proposed algorithm can replace the standard PCA
similarity factor in many areas such as distinguishing and cluster-
ing typical operational conditions and analyzing product grade
transitions of process systems. Moreover, CBDTW can be used for
data mining purposes when indexing is not required.
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